Tuned Mass Dampers

A tuned mass damper (TMD) is a device consisting of a mass, a spring, and a damper that is attached to a structure in order to reduce the dynamic response of the structure. The frequency of the damper is tuned to a particular structural frequency so that when that frequency is excited, the damper will resonate out of phase with the structural motion. Energy is dissipated by the damper inertia force acting on the structure. The TMD concept was first applied by Frahm in 1909 (Frahm, 1909) to reduce the rolling motion of ships as well as ship hull vibrations. A theory for the TMD was presented later in the paper by Ormondroyd and Den Hartog (1928), followed by a detailed discussion of optimal tuning and damping parameters in Den Hartog’s book on mechanical vibrations (1940). The initial theory was applicable for an undamped SDOF system subjected to a sinusoidal force excitation. Extension of the theory to damped SDOF systems has been investigated by numerous researchers. Significant contributions were made by Randall et al. (1981), Warburton (1981, 1982), Warburton and Ayorinde (1980), and Tsai and Lin (1993).


How Tuned Mass Dampers Work


A tuned mass damper (TMD) consists of a mass (m), a spring (k), and a damping device (c), which dissipates the energy created by the motion of the mass (usually in a form of heat). In this figure, M is the structure to which the damper would be attached.

From the laws of physics, we know that F = ma and a = F/m. This means that when an external force is applied to a system, such as wind pushing on a skyscraper, there has to be acceleration. Consequently, the people in the skyscraper would feel this acceleration. In order to make the occupants of the building feel more comfortable, tuned mass dampers are placed in structures where the horizontal deflections from the wind’s force are felt the greatest, effectively making the building stand relatively still.

When the building begins to oscillate or sway, it sets the TMD into motion by means of the spring and, when the building is forced right, the TMD simultaneously forces it to the left.

Ideally, the frequencies and amplitudes of the TMD and the structure should nearly match so that EVERY time the wind pushes the building, the TMD creates an equal and opposite push on the building, keeping its horizontal displacement at or near zero. If their frequencies were significantly different, the TMD would create pushes that were out of sync with the pushes from the wind, and the building’s motion would still be uncomfortable for the occupants. If their amplitudes were significantly different, the TMD would, for example, create pushes that were in sync with the pushes from the wind but not quite the same size and the building would still experience too much motion.

The effectiveness of a TMD is dependent on the mass ratio (of the TMD to the structure itself), the ratio of the frequency of the TMD to the frequency of the structure (which is ideally equal to one), and the damping ratio of the TMD (how well the damping device dissipates energy).

Wide span structures (bridges, spectator stands, large stairs, stadium roofs) as well as slender tall structures (chimneys, high rises) tend to be easily excited to high vibration amplitudes in one of their basic mode shapes, for example by wind or marching and jumping people. Low natural frequencies are typical for this type of structures, due to their dimensions, as is their low damping. With GERB Tuned Mass Dampers (TMD), these vibrations can be reduced very effectively.




Have more Questions to ask?

Contact Us